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NOMENCLATURE 

radius of disk of contact ; 
q/a2 = Fourier number ; 
thermal conductivity of solid t ; 
thermal conductivity of solid 2 ; 
Laplace transform parameter ; 
Legendre polynomial of degree n ; 
cylindrical radial coordinate ; 
thermal resistance; 
steady-state therma resistance; 
time ; 
temperature distribution in solid 1; 
temaerature distribution in solid 2; 
initcal temperature in solid 1; 
initial temperature in solid 2; 
cylindrical coordinate. 

Greek symbols 

sj.ks Kronecker delta; 
e, oblate spheroida coordinate; 
% ablate spheroidal coordinate; 
8 ir dimensionless temperature distribution in solid 1; 
e 21 dimensionless temperature distribution in solid 2. 

1. lNTBODUCTION 

IT IS WELL known that when the plane surfaces of two bodies 
are brought together the actual contact does not take place 
over the entire interfacial area, but over a fraction of that area. 
As a result, for any heat flow taking place across the interface, 
the flow lines are constricted and lead to what is termed 
‘contact resistance’. Over the region where there is no contact, 
heat may be transported by the air present between the 
surfaces. At atmospheric pressures, however, this heat trans- 
fer may be neglected, and it is quite reasonable to assume that 
the areas of no contact are insulated. Under such an 
assumption we have a well-defined, heat-conduction problem 
but the general irregularity of the contacting areas makes an 
exact anafysis virtually impracticable. For cases in which the 
actual contact takes place over a small fraction of the total 
interracial area, one can model a single area of contact by 
assuming it to be a circular disk between two semi-infinite 
solids. The areas around the disk can be taken to be insulated. 

The steady-state solution for heat flow in this geometry is 
well known [I] and the transient case has been dealt with 
numerically by Schneider et al. [2]. In an approximate 
analysis, Heasley [3] obtained a solution to the transient case 
by assuming the region ofcontact to be a perfectly conducting 
sphere between two semi-infinite solids. Other models by 
Heasley [3] involve one-dimensional approximations of the 
heat equation and their validity is very restricted. In the 

present study the problem as posed by Schneider et al. [2] is 
solved analytically by using a long-time perturbation scheme 
based on the work done by Norminton and Blackwell [4] for 
heat flow from an isothermal disk. That is, a solution to the 
time-dependent heat equation is found for the problem in 
which two different solids at different uniform initial tempera- 
tures are brought into contact over a finite circular disk. The 
solution is valid for long time, large thermal diffusivities or for 
small areas of contact; in other words it is valid for large 
Fourier numbers. 

2. STATEMENT OF PROBLEM 

Two semi-infinite solids at different initial temperatures are 
brought together and perfect thermal contact is established 
over a finite circular region. The rest of the areas of the 
contacting planes are assumed to be insulated. Far away from 
the contact areas the temperature in each solid is taken to be 
fixed at the initial value. 

To adapt to the geometry one resorts to the oblate 
spheroidal coordinate system. The prolate and oblate coor- 
dinate systems were used by Norminton and Blackwell [4] to 
obtain the large-time temperature distribution for one- 
medium heat flow from isothermal spheroids and the isother- 
mal circular disk. In the present analysis the case of the disk is 
generalized to that of two media, with the disk temperature 
bemg nonuniform and time-varying. 

With the transformation of the (r, z) cylindrical coordinates 
into the (6,~) oblate spheroidal coordinates through the 
relations r - a[(1 -l- &2)(1 - $)]“2 and .z = aeq, the axi- 
symmetric heat equation takes the form: 

where i is used to denote i = 1,2; t is the time, TI is the 
temperature distribution in the hotter solid (say, solid I), Tz is 
the temperature distribution in the other solid {solid 2), and 
kr and k, are the corresponding thermal diffusivities. The 
initial, the boundary and the interface conditions are given 
by: 

t=O;OIE<rJ3;0<q<l, (2) 

, E=O;t>O;OSqll, (3) 

E+CC;t>o;OIqIl, (4) 
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Here, k, and k, are the thermal conductivities of the solids I 
and 2, respectively. 

3. .AUAL\SIS 

After redefining the dependent variables Tr and rZ in the 
dimensionless form 

(6) 

we take the Laplace transform of Ui with respect to time, and 
then take the Legendre transform with respect to 8. The 
resulting dependent variable 

1 

i‘ I 

I 

@i, Z&) = RZ”()l) eeP’O,(c:, VJ ; t)dt dq (7) 
0 0 

is further substituted by h, &) = Qi, 2m(E) exp[(p/ti,)“’ UC] 
and the solution is obtained by regular perturbation expan- 
sion for fi, 2m(~) in powers of p”‘. 

Since the procedure for obtaining the perturbation so- 
lution is rather cumbersome (see Sadhal [S]), the details are 
!eft out for brevity. After carrying out the expansion to order 

P 3f2, and inversion to the (s,n;t) domain, we expand the 
solution for n~/(4K~t)“~ c< 1 to give 

where 

(k, + MD, .= 

and 

a2 
2(k, + k2) 
---Ai 

3K; 
+ “$ + !$ I 2 1 

F‘or the specral case k, -+ -I we have 

0, = 0, 

and : 

i 14) 

This result corresponds to the situation in which a semi- 
infinite solid, initially at a uniform temperature T2a. has a 
circular region at the surface exposed to a temperature ‘I,, for 
f > 0 ; the remainder of the surface is insulated. The results of 
Norminton and Blackwell [4] agree with equation (15) only 
up to order as/(nk,r)l’z. For the next higher order terms, the 
error in [4] is due to the omission of a p3” exp[ - (p/r?)’ ‘2 ai:] 
type term in the perturbation expansion. This term actually 
makes a contribution of the order i’1:~/(n~2t)“~. The details 
are discussed by Sadhal [S]. 

4. CALCLLATION OF RESISTANCE 

After heat flow calculations over the disk, the resistance of 
the two solids is found to be 

where R,, = (k, + k,)/4a(T,, -- T’,)k,k2 is the steady-state 
resistance and Fo, = K,t/a’ is the Fourier number based on 
the lower thermal diffusivity (i.e. ti2 < K,). This result is 
presented in Fig. 1 for contacts between copper and steel, steel 
and glass, and copper and glass, with Fo, ranging between 1 
and 10000. The calculations show that the resistances for 
copper-glass and steel-glass contacts are almost the same. 
This behavior results because, for these cases, most of the 
resistance is that of the glass alone and the metals (steel or 
copper) make very little contribution. 

5. DlSCUSSlOh 

The present work represents a generalization and a 
correction of the results obtained by Norminton and Black- 
well[4]. In a numerical analysis by Schneider et al. [2], four 
combinations of solids were dealt with. In each case the ratio 
of the time-dependent resistance to the steady-state resistance 
was plotted as a function of the Fourier number based on the 
lower thermal diffusivity. They showed that when the re- 
sistances ratio is plotted against the variable, 
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CONDUCTIVITY 

[watts/lm-Kl] 

COPPER 38 I 
STEEL 43 

GLASS 1.03 

DIFFUSIVITY 

t&sec) 

13.2 x IO@ 

1.36 

FIG. 1. Unsteady thermal resistances of different pairs of solids as a function of the Fourier number 

all the four cases lie close to a single curve. This curve, 
however, is not consistent with the individual plots they 
obtained, but it agrees approximately with equation (16) of 
the present study for Fourier numbers greater than unity. 

The thermal resistance, in general, depends on the con- 
ductivity ratio, k,/k,, the diffusivity ratio, K,/K~, and the 
Fourier number ~~t/a’, where we take K~ < K~. Schneider et 
al. [2] showed that for the cases they considered, the influence 
of the conductivity ratio appeared only in the steady-state 
part of the thermal resistance. They concluded that when the 
resistance is normalized with the steady-state value, the result 
depends only on the diffusivity ratio and the Fourier number. 
In the present study, however, equation (16) shows that the 
conclusion of Schneider et al. [2] is not necessarily valid. The 
results of Schneider et al. [2] showing no dependence on k,/k, 
is not surprising, because they considered materials which, 
like most solids, have k,/kl 1 Q/K,. The present study, 
however, is completely general and it exposes the dependence 
on both kJk, and KJK,. 
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NOMENCLATURE 

Gr, Grashof number; 
H, spacing between plates; 
Pr, Prandtl number; 
x, Y, z, spatial coordinates ; 

T temperature ; 
L reference temperature. 

Greek 

u, spatial wavenumber; 

H.M.T. 2315-1 


